

2024 Mathematics

Higher - Paper 2

Question Paper Finalised Marking Instructions

© Scottish Qualifications Authority 2024

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal:
$$\overset{5}{}_{x=2} & and \ x = -4 \\ \overset{6}{}_{y=5} & y = -7 \\ \overset{6}{}_{y=5} & and \ y = -7 \\ \overset{6}{}_{y=5} & and \ y = -7 \\ \overset{6}{}_{x=-4} & and \ y = -7 \\ \end{array}$$

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$. or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0.3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 144 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example $(x^3 + 2x^2 + 3x + 2)(2x+1)$ written as

 $(x^3 + 2x^2 + 3x + 2) \times 2x + 1$

 $= 2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.

- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Q	uestio	on	Generic scheme		Illustrative scheme		Max mark
1.	(a)		• ¹ determine midpoint of AC		• ¹ (4,4)		3
			• ² determine gradient of median		• ² 2 or $\frac{10}{5}$		
			• ³ find equation of median		• ³ $y = 2x - 4$		
Note	es:	1					
1. • 2. • 3. A t 4. •	² is of ³ is or at \bullet^3 a erms l ³ is no	nly av nly ava ccept have t ot avai	ailable to candidates who use a mi ailable as a consequence of using a any arrangement of a candidate's been simplified. lable as a consequence of using a p	dpoi 'mic equa	nt to find a gradient. dpoint' of AC and the point B ation where the constant endicular gradient.		
Com	monly	/ Obse	erved Responses:				
Cano	lidate	A - p	erpendicular bisector of AC	Can	didate B - altitude through B		
	$=-\frac{4}{-1}$	$\Rightarrow m_{\perp}$	$=\frac{7}{4}$ $\bullet^2 \times$	m_{AC}	$=-\frac{7}{7}$	• ¹ ^	
4 <i>y</i> =	=7x-	12	4 ● ³ ✓ ₂	m_{\perp}	$=\frac{7}{4}$	• ² ×	
For c	other (perpei	ndicular bisectors award 0/3	4 <i>y</i>	=7x-17	• ³ ✓ 2	
Cano	lidate	C - m	edian through A	Can	didate D - median through C		
midp	oint E	BC = (5,-3) • ¹ ×	mid	point AB $(-2,1)$		• ¹ ×
$m_{\scriptscriptstyle{\rm AM}}$	$=-\frac{11}{8}$		• ² ✓ 1	т _{см}	$ = -\frac{1}{13} $	● ² ✓ 1	
8 <i>y</i> =	-11x	+ 31	• ³ ✓ 2	13y	x = -x + 11	• ³ ✓ 2	
	(b)		• ⁴ determine gradient of BC		• $4 \frac{6}{12}$		3
			• ⁵ determine gradient of L		• ⁵ $-\frac{12}{6}$		
			• ⁶ find equation of L		• $y = -2x + 22$		
Note	s:						
5. •	⁶ is o	nly av	ailable as a consequence of using a	a per	pendicular gradient and C.		
 At •⁶ accept any arrangement of a candidate's equation where the constant terms have been simplified. 							
Com	Commonly Observed Responses:						
Cano	lidate	E - al	titude through C				
$m_{\rm AB}$	=-7		• ⁴ ×				
$m_{\perp} =$	1 7		• ⁵ ✓ ₁				
$y = \frac{1}{2}$	$\frac{1}{7}(x-1)$	11)	● ⁶ ✓ 1				

Question		on	Generic scheme	Illustrative scheme	Max mark
1.	(c)		• ⁷ determine <i>x</i> -coordinate	• ⁷ 6.5 or $\frac{13}{2}$	2
			• ⁸ determine <i>y</i> -coordinate	• ⁸ 9	
Note	es:				
7. F	or $\left(\frac{2}{4}\right)$	$\frac{6}{4},9$	award 1/2.		
Com					
Cano	lidate	F - ro	ounding decimals		
(a) 4	4y = 5	x - 19			
(b) $y = -2x + 22$					
(c) x	$c = \frac{107}{13}$	7 	● ⁷ ✓ 1		
У	= 5.6		• ⁸ ✓ 1		

Question		n	Generic scheme	Illustrative scheme	Max mark
2.			• ¹ find <i>y</i> -coordinate	• ¹ 1	5
			\bullet^2 write in differentiable form	• ² $8x^{-3}$	
			• ³ differentiate	• ³ 8×(-3) x^{-4}	
			• ⁴ find gradient of tangent	• $\frac{3}{2}$	
			$ullet^5$ determine equation of tangent	• $3x + 2y = 8$	

Notes:

- 1. Only \bullet^1 and \bullet^2 are available to candidates who integrate. However, see Candidates E and F.
- 2. $8 \times (-3) x^{-4}$ without previous working gains \bullet^2 and \bullet^3 .
- 3. \bullet^3 is only available for differentiating a negative power. \bullet^4 and \bullet^5 are still available.
- 4. •⁴ is not available for $y = -\frac{3}{2}$. However, where $-\frac{3}{2}$ is then used as the gradient of the straight line, •⁴ may be awarded see Candidates A, B and C.
- 5. •⁵ is only available where candidates attempt to find the gradient by substituting into their derivative.
- 6. \bullet^5 is not available as a consequence of using a perpendicular gradient.
- 7. Where x = 2 has not been used to determine the *y*-coordinate, \bullet^5 is not available.

Commonly Observed Responses:			
Candidate A - incorrect notation		Candidate B - use of values in equ	ation
y = 1	•¹ ✓ - BoD	y = 1	•¹ ✓ - BoD
$y = 8x^{-3}$	• ² 🗸	$y = 8x^{-3}$	• ² 🗸
$y = -24x^{-4}$	• 3 🗸	$\frac{dy}{dt} = 8 \times (-3) x^{-4}$	• 3 🗸
$y = -\frac{3}{2}1$	• ⁴ ✓ - BoD	$\frac{dx}{dy} = \frac{3}{3}$	4
3x + 2y = 8	•5 🗸	$\frac{1}{dx} = \frac{1}{2}$	• •
		$y = -\frac{3}{2}$	
		3x+2y=8	•5 🗸
Candidate C - incorrect notation		Candidate D	
y=1	• ¹ ✓ - BoD	y = 1	•1 🗸
$y = 8x^{-3}$	• ² ✓	$y = 8x^{-3}$	• ² ✓
$\frac{dy}{dx} = 8 \times (-3) x^{-4}$	• ³ ✓	$\frac{dy}{dx} = 8 \times (-3) x^{-4} = 0$	• 3 🗸
$y = -\frac{3}{2}$	• ⁴ ×	$8 \times (-3)(2)^{-4} = 0$	
Fyidence for e ⁴ would need to a	annear in the	$m = -\frac{3}{2}$	• ⁴ ×
equation of the line		3x + 2y = 8	• ⁵ ✓ 1
•			

Question	Generic scheme	Illustrative scheme	Max mark
2. (continued)			
Candidate E - ir	ntegrating in part C	andidate F - appearance of $+c$	
<i>y</i> = 1	• ¹ ✓ y	=1	• ¹ 🗸
$y = 8x^{-3}$	• ² 🗸	$=8x^{-3}$	• ² ✓
$\frac{dy}{dx} = -24x^{-2}$	$\bullet^3 \times \frac{a}{c}$	$\frac{y}{x} = -24x^{-4} + c$	• ³ × • ⁴ ×
$\frac{dy}{dx} = -6$	• ⁴ ✓ 1	~	• ⁵ ×
y = -6x + 13	• ⁵ ✓ 1		

Q	Question		Generic scheme	Illustrative scheme	Max mark
3.	(a)		• ¹ find \overrightarrow{ED}	$\bullet^1 \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix}$	2
			• ² find \overrightarrow{EF}		
Note	es:			-	
1. Fo 2. A	or can ccept	didate vecto	es who find both \overrightarrow{DE} and \overrightarrow{FE} correctly rs written horizontally.	r, award 1/2.	
Com	monly	/ Obse	erved Responses:		
	1	1			[
	(b)	(i)	• ³ evaluate ED.EF	• ³ 16	1
		(ii)	• ⁴ evaluate \overrightarrow{ED}	• ⁴ \sqrt{53}	4
			• ⁵ evaluate \overrightarrow{EF}	• ⁵ √14	
			• ⁶ substitute into formula for scalar product	• $\cos \text{DEF} = \frac{16}{\sqrt{53} \times \sqrt{14}}$ or $\sqrt{53} \times \sqrt{14} \times \cos \text{DEF} = 16$	

•⁷ 54.028...° or 0.942... radians

 \bullet^7 calculate angle

Question	Generic scheme	Illustrative sch	neme Max mark		
3. (b) (continue	3. (b) (continued)				
Notes:					
 3. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. For example accept √1² + 4² + 6² = √53 or √1² + -4² + 6² = √53 for •⁴. However, do not accept √1² - 4² + 6² = √53 for •⁴. 4. •⁶ is not available to candidates who simply state the formula cos θ = ED.EF/ ED EF . However, cos θ = 16/(√53 × √14) and √53 × √14 × cos θ = 16 are acceptable for •⁶. 5. Accept correct answers rounded to 54° or 0.9 radians (or 60 gradians). 6. Do not penalise the omission or incorrect use of units. 7. •⁷ is only available as a result of using a valid strategy. 8. •⁷ is only available for a single angle. 9. For a correct answer with no working award 0/4 					
Commonly Obse	erved Responses:				
Candidate A - p $ \begin{pmatrix} 1 \\ -4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 18 \end{pmatrix} $	oor notation $\begin{pmatrix} 4 \\ 3 \end{pmatrix} = 16$ $\bullet^3 \times$	Candidate B - insufficient of $ \vec{ED} = \sqrt{53}$ $ \vec{EF} = \sqrt{14}$ $\frac{16}{\sqrt{53} \times \sqrt{14}}$ 54.028° or 0.942 radiat	communication • ⁴ \checkmark • ⁵ \checkmark • ⁶ \land ns • ⁷ \checkmark_1		
$\begin{vmatrix} Candidate C - B \\ \left \overrightarrow{OF} \right = \sqrt{14} \end{vmatrix}$	EWARE • ⁵ ×				

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
4.	(a)		• ¹ identify <i>x</i> -coordinate	•1 3	2
			• ² identify <i>y</i> -coordinate	• ² 5	
Note	es:				L
Com	monly	Obse	erved Responses:		
					1
	(b)		• ³ identify roots	• ³ "cubic" with roots at -1 and 2	3
			• ⁴ interpret point of inflection	• ⁴ "cubic" with turning point at (2,0)	
			• Identify orientation and complete cubic curve	• ⁵ cubic with maximum turning point at (2,0)	
Note	es:				L
1. N 2. W av 3. D	ote tha /here a ward 0/ o not p	it the cand /3. H enali	position of the minimum turning poi lidate has not drawn a cubic curve or owever see Candidate D. se the appearance of an additional re	int of $f'(x)$ is not being assessed. Their graph does not extend outwith $-1 \le 0$ oot outwith $-1 \le x \le 2$ (on a cubic curve) a	$\leq x \leq 2$ at \bullet^3 .
Com	monly	Obse	erved Responses:		
Cano	didate	Α	-f'(x)	andidate B	
			x-		

Question	Generic scheme	Illustrative scheme A m	Max nark
4. (b) (continue	ed)		
Candidate C		Indidate D - left derivative ≠ right derivat (2,0) y 2 x x x	tive

Q	uestic	n	Generic scheme		Illustrative scheme	Max mark
5.			• ¹ integrate		$\bullet^1 -\frac{1}{5}\cos 5x$	3
			• ² substitute limits		$\bullet^{2}\left(-\frac{1}{5}\cos\left(5\times\frac{\pi}{7}\right)\right)-\left(-\frac{1}{5}\cos\left(5\times0\right)\right)$	
			• ³ evaluate integral		• ³ 0.3246	
Note	s:					
 Fc in Dc in' Ac 4. •³ 	or cano valid a o not p tegrat ccept is onl	didate approa benali ing. $\left(-\frac{1}{5}c\right)$ y avai	es who differentiate throughout, m ach (for example $\cos 5x^2$) award 0/ se the inclusion of '+ <i>c</i> ' or the cor $\cos 5\left(\frac{\pi}{7}\right) - \left(-\frac{1}{5}\cos 5(0)\right)$ for • ² . lable where candidates have consid	ake /3. ntinu dere	no attempt to integrate, or use another ed appearance of the integral sign afte d both limits within a trigonometric fur	r nction.
Com	monly	Obse	erved Responses:			
	l <mark>idate</mark> s5x	A - ir	ntegrated in part • ¹ ×	Can inte	didate B - insufficient evidence of gration	
-cos	$\left(\frac{5\pi}{7}\right)$	-(-c	$os(5\times0)) \qquad \bullet^2 \checkmark_1 \\ \bullet^3 \checkmark_1$	cos cos -1.0	$5x \qquad \bullet^{1} \times \\ \left(\frac{5\pi}{7}\right) - \left(\cos(5\times 0)\right) \qquad \bullet^{2} \checkmark_{2} \\ \bullet^{3} \checkmark_{2}$	
Cand integ	lidate gratio	C - ir า	sufficient evidence of	Can inte	didate D - working in degrees before grating	
$\frac{\frac{1}{5}\sin^2}{\frac{1}{5}\sin^2}$	$5x = \frac{5\pi}{7} - \frac{1}{5}$	-sin 0	• ¹ \times • ² \checkmark ₂ • ³ \checkmark ₂	$-\frac{1}{5}$	$\sin 5x dx \qquad \qquad \bullet^{1} \times \\ \cos 5x \\ \frac{1}{5} \cos 128.57 \\ -\left(-\frac{1}{5} \cos 0\right) \qquad \bullet^{2} \checkmark_{1} \\ 246 \qquad \qquad \bullet^{3} \checkmark_{1}$	

Question		n	Generic scheme	Illustrative scheme	Max mark
6.			Method 1	Method 1	5
			• ¹ state linear equation	• $\log_5 y = 3\log_5 x - 2$	
			• ² introduce logs	• ² $\log_5 y = 3\log_5 x - 2\log_5 5$	
			• ³ use laws of logs	• ³ $\log_5 y = \log_5 x^3 - \log_5 5^2$	
			• ⁴ use laws of logs	• $\log_5 y = \log_5 \frac{x^3}{5^2}$	
			• ⁵ state a and b	• ⁵ $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$	
			Method 2	Method 2	5
			• ¹ state linear equation	• $\log_5 y = 3\log_5 x - 2$	
			• ² use laws of logs	• ² $\log_5 y = \log_5 x^3 - 2$	
			• ³ use laws of logs	$\bullet^3 \log_5 \frac{y}{x^3} = -2$	
			• ⁴ use laws of logs	$\bullet^4 \frac{y}{x^3} = 5^{-2}$	
			• ⁵ state a and b	• ⁵ $a = \frac{1}{25}, b = 3 \text{ or } y = \frac{x^3}{25}$	
			Method 3	Method 3 The equations at • ¹ , • ² and • ³ must be stated explicitly	5
			• ¹ introduce logs to $y = ax^b$	• ¹ $\log_5 y = \log_5 ax^b$	
			• ² use laws of logs	$\bullet^2 \log_5 y = b \log_5 x + \log_5 a$	
			• ³ interpret intercept	• $\log_5 a = -2$	
			• ⁴ use laws of logs	$\bullet^4 a = \frac{1}{25}$	
			● ⁵ interpret gradient	• ⁵ $b=3$	

Question	Generic scl	neme	Illustr	ative scheme	Max mark	
6. (continued)						
Notes						
 In any method, marks may only be awarded within a valid strategy using y = ax^b. For example, see Candidates C and D. Markers must identify the method which best matches the candidate's approach; markers must not mix and match between methods. Penalise the omission of base 5 at most once in any method. Where candidates use an incorrect base then only •² and •³ are available (in any method). Do not accept a = 5⁻². In Method 3, do not accept m = 3 or gradient = 3 for •⁵. Do not penalise candidates who score out "log" from equations of the form log₅ m = log₅ n. 						
Commonly Obse	erved Responses					
Candidate A - m in Method 3	hissing equations at $ullet^1$,	\bullet^2 and \bullet^3 Car	ndidate B - no w 1	orking - Method 3		
$a = \frac{1}{2}$	•4	✓ <i>b</i> =	25	• ' 🗴		
^{<i>u</i> –} 25	5	a =	3	• ⁵ ×		
<i>b</i> = 3	•	✓				
Candidate C - M	ethod 2	Car	Candidate D - Method 2			
y = 3x - 2		log	$y = 3\log_5 x - 2$	●1 ✓		
$\log_5 y = 3\log_5 x -$	•2 • ¹	✓ log	$f_5 y = \log_5 x^3 - 2$	● ² ✓		
$\log_5 y = \log_5 x^3 -$	•2 • ²	\checkmark <u>y</u>	=-2	• ³ x • ⁴ x • ⁵ x		
$y = x^3 - 2$	• ³ × • ⁴	$\mathbf{x} \bullet^5 \mathbf{x} \qquad x^3$				
Candidate E - us	se of coordinate pairs					
$\log_5 x = 4$ and $\log_5 x = 4$	$g_5 y = 10$ \bullet^1	✓				
$x = 5^4$ and $y = 5^4$	5 ¹⁰ • ²	✓				
$\log_5 x = 0$, $\log_5 x$	<i>y</i> = - 2					
\Rightarrow x=1, y=5 ⁻²	• ³	√				
$5^{-2} = a \times 1^b \Longrightarrow a =$	$=\frac{1}{25}$ • ⁴	✓				
$5^{10} = 5^{-2} \times 5^{4b} \Longrightarrow$	-2+4b=10					
$\Rightarrow b = 3$	• ⁵	✓				
Candidates	may use $(0, -2)$ for \bullet^1	and ● [∠]				
	and $(4,10)$ for \bullet^3 .					

Question		n		Generic scheme		Illustrative scheme	Max mark
7.				Method 1		Method 1	5
			• ¹	integrate using 'upper' – 'lower'	•1	$\int \left(\left(6 + 4x - 2x^2 \right) - \left(x^3 - 6x^2 + 11x \right) \right) dx$	
			•2	identify limits	•2	$\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) - \left(x^{3} - 6x^{2} + 11x \right) \right) dx$	
			•3	integrate	•3	$6x - \frac{7}{2}x^2 + \frac{4}{3}x^3 - \frac{1}{4}x^4$	
			•4	substitute limits	•4	$\left(6(2)-\frac{7}{2}(2)^{2}+\frac{4}{3}(2)^{3}-\frac{1}{4}(2)^{4}\right)-0$	
			• ⁵	evaluate area	•5	$\frac{14}{3}$ (units ²)	
				Method 2		Method 2	
			• ¹	know to integrate between appropriate limits for both equations	• ¹	$\int_{0}^{2} \dots dx$ and $\int_{0}^{2} \dots dx$	
			• ²	integrate both functions	• ²	$6x + \frac{4x^2}{2} - \frac{2x^3}{3}$ and $\frac{x^4}{4} - \frac{6x^3}{3} + \frac{11x^2}{2}$	
			•3	substitute limits into both expressions	•3	$\left(6(2) + \frac{4(2)^2}{2} - \frac{2(2)^3}{3}\right) - 0$ and	
						$\left(\frac{(2)^4}{4} - \frac{6(2)^3}{3} + \frac{11(2)^2}{2}\right) - 0$	
			•4	evaluate both integrals	•4	$\frac{44}{3}$ and 10	
			• ⁵	evidence of subtracting areas	•5	$\frac{14}{3}$ (units ²)	

(Question	Generic sche	eme	Illustrative scheme	Max mark				
7. (7. (continued)								
Not	Notes:								
1.	Correct answer with no working - award 1/5.								
2.	Do not pena	lise lack of 'dx' at \bullet^1	in Method 1	•					
3.	In Method 1	, limits and ' dx' must	appear by	the \bullet^2 stage for \bullet^2 to be awarded and in Me	thod 2 by				
Δ	In Method 1	treat the absence o	f hrackets a	t • ¹ stage as had form only if the correct in	tegrand				
••	is obtained.	See Candidates C an	d D.	to stage as but form only in the correct in	tegrana				
5.	Where a car	ndidate differentiates	s one or mor	e terms, or fails to integrate, no further m	arks are				
	available.								
6.	In Method 1	, accept unsimplified	expressions	5 such as $6x + \frac{4x^2}{2} - \frac{2x^3}{3} - \frac{x^4}{4} + \frac{6x^3}{3} - \frac{11x^2}{2}$ at	3 .				
7.	Do not pena	lise the inclusion of '	+c'.						
8.	Do not pena	alise the continued ap	pearance of	the integral sign or dx after integrating.					
9.	● ⁵ is not ava	ailable where solution	s include st	atements such as $\left(-\frac{14}{3} = \frac{14}{3}\right)$ square units'	. See				
	Candidates	A and B.		5 5					
10.	In Method 1	, where a candidate u	uses an inva	lid strategy the only marks available are $ullet^3$	for				
	integrating	a polynomial with at	least four te	erms (of different degree) and \bullet^4 for substitution	uting				
11	the limits of $At \bullet^4$ do no	t u and 2 into the resi t penalise candidates	for who red	SSION. HOWEVER, SEE CANDIDATE E.	nlace of				
	Λ^4 Similarly	v do not popaliso car	ndidatos wri	ting Ω in place of $f(\Omega)$. However, candidat	os who				
		y, do not penatise cai	iuiuates wii						
	write 0° in	place of 0° or $2(0)$ ir	n place of 6	(0) do not gain •⁴.					
Cor	nmonly Obse	erved Responses:							
Can	didate A - s	witched limits		Candidate B - 'lower' - 'upper'					
0 (()	$(a + a^2)$	(3, 2, 4,))	2 ($\begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	-2				
][$(6+4x-2x^{-})$	$-(x^2-6x^2+11x))dx$	●- ✓	$\int_{0} \left(\left(x^{2} - 6x^{2} + 11x \right) - \left(6 + 4x - 2x^{2} \right) \right) dx$	•- v				
2									
6	7{r^2} 4	₃ 1 ₄	• ³ •	$\int_{0}^{1} x^{3} - 4x^{2} + 7x - 6 dx$					
-0	$2^{-2x} + \frac{-2x}{3}$	$\frac{1}{4}x$	•••		2				
	<i>(</i>			$=\frac{1}{4}x^4 - \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x$	•3 🗸				
=0	$=0-\left(6(2)-\frac{7}{2}(2)^{2}+\frac{4}{2}(2)^{3}-\frac{1}{4}(2)^{4}\right)$								
	$\left(\frac{1}{4}(2)^{4}-\frac{1}{2}(2)^{4}+\frac{1}{2}(2)^{2}-6(2)\right)-(0)$ • ⁴								
	14								
= -	3			$\left =-\frac{1}{3}\right $					
1	4		al a 5 a	14	. E .				
= -			• x • x	· · Aron -	/ n /				

Question	Generic scheme	Illustrative scheme	Max mark
7. (continued)			
Candidate C - n	nissing brackets	Candidate D - missing brackets	
$\int_{0}^{5} 6 + 4x - 2x^{2} - x$	$x^3 - 6x^2 + 11x dx$	$\int_{0}^{1} 6 + 4x - 2x^{2} - x^{3} - 6x^{2} + 11x dx \qquad \bullet^{1}$	× • ² √ ₁
$\int_{0}^{1} 6 - 7x + 4x^2 - x$	$e^{1} \checkmark e^{2} \checkmark$	$\int_{0}^{1} 6 + 15x - 8x^2 - x^3 dx$	
		$6x + \frac{15}{2}x^2 - \frac{8}{3}x^3 - \frac{1}{4}x^4$	• ³ ⁄ 1
		$\left(6(2)+\frac{15}{2}(2)^2-\frac{8}{3}(2)^3-\frac{1}{4}(2)^4\right)-(0)$	• ⁴ ✓ 1
		$\frac{50}{3}$	● ⁵ ✓ 1
Candidate E - '	upper' + 'lower'	Candidate F - incorrect substitution	
$\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) \right)$	$+(x^3-6x^2+11x))dx$ $\bullet^1 \times \bullet^2 \checkmark$	1 $\int_{0}^{2} \left(\left(6 + 4x - 2x^{2} \right) - \left(x^{3} - 6x^{2} + 11x \right) \right) dx$	• ¹ ✓ • ² ✓
$6x + \frac{15}{2}x^2 - \frac{8}{3}x^2$	$a^3 + \frac{1}{4}x^4$ $a^3 \checkmark$	$\begin{bmatrix} 6x + 2x^2 - \frac{2}{3}x^3 \\ -\left(\frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2\right) \end{bmatrix}$	•3 🗸
$\left \left(6(2) + \frac{15}{2}(2)^2 \right) \right $	$-\frac{8}{3}(2)^3+\frac{1}{4}(2)^4\Big)-0$ • ⁴	$\int \left(6(2) + 2(2)^2 - \frac{2}{3}(2)^3 \right) - \left(\frac{1}{4}(0)^4 - 2(0)^3 + \frac{11}{2}(0)^4 - 2(0)^3 + \frac{11}{2}(0)^4 - \frac{1}{2}(0)^4 - $	$\left(0\right)^{2} = 4 \times$
$\left \frac{74}{3} \right $	●5 ✓	$\frac{44}{3}$	• ⁵ ✓ 2

Q	uestic	on	Generic scheme		Illustrative scheme	Max mark	
8.	(a)		• ¹ interpret notation		• ¹ $f(x+1)$ or $2g(x)^2 - 18$	2	
			• ² state expression for $f(g(x))$		• ² $2(x+1)^2 - 18$		
Note	es:						
1.	For 2($(x+1)^2$	2 –18 without working, award bot	:h ●¹ a	nd \bullet^2 .		
Com	monly	v Obse	erved Responses:				
Cano	lidate	A - g	(f(x))	Car	ndidate B - beware of two "attempts"		
$2x^{2}$ -	-17		$\bullet^1 \times \bullet^2 \checkmark_1$	f($g(x)) = 2x^2 - 18 \qquad \qquad \bullet^1 \times \bullet^2$	×	
			· · · · · · · · · · · · · · · · · · ·	f($(x+1) = 2(x+1)^2 - 18$		
	(b)		• ³ apply condition		• $3 2(x+1)^2 - 18 = 0$	2	
			• ⁴ state values of x		• ⁴ -4 and 2		
Note	es:						
2.	Workiı	ng at •	³ must be consistent with working	g at •	2.		
3.	Accep	t 2(x	$(+1)^2 - 18 \neq 0$ for \bullet^3 only when x	=-4	and $x = 2$ are stated explicitly at • ⁴ . S	ee	
	Candio	date H					
4.	• ⁴ is o	nly av	ailable for finding the roots of a c	luadra	atic.		
5.	For su	bsequ	ent incorrect working, the final n	iark 1	S not available. For example $-4 < x < 2$	•	
Com	monly	v Obse	erved Responses:				
Cano Part	lidate (a)	C - e	xpanding brackets in (a)	Car Par	ndidate D - expanding brackets in (a) t (a)		
f(g	(x) =	$= 2(x \cdot$	$(+1)^2 - 18$ $\bullet^1 \checkmark \bullet^2 \checkmark$	f($g(x) = 2(x+1)^2 - 18$ • ¹ \checkmark •	2 🧹	
f(g)	(x) =	$= 2x^2 +$	-4x - 16	$f(g(x)) = 2x^2 - 16$			
Part	(h)) (b)			Par	t (b)		
$2x^2$	+4x -	16 = 0	•3 •	$2x^2$	$e^{2} - 16 = 0$ • ³ ×		
x = -	-4 an	d $x =$	2 •4 ✓		$\frac{1}{\sqrt{8}}$		
Cano	lidate	E - 0	$(f(\mathbf{r}))$	Car	ndidate F - equivalent condition		
Part	(a)	- 8	(f(x))		·		
f(g	(x) = (x)	$= 2x^2 -$	$\bullet^1 \times \bullet^2 \checkmark_1$	2(:	$(x+1)^2 = 18$ $\bullet^3 \checkmark$		
Part	(b)			Ň	,		
$2x^{2}$	-17 =	0	• ³ ✓1				
17							
x = x	$\pm \sqrt{\frac{1}{2}}$		• ⁴ √ 1				
Cano	lidate	G - u	se of ≠	Car	ndidate H - use of $ eq$		
$2(x \cdot$	$+1)^{2}$ -	18 ≠ C	• ³ ×	2(:	$(x+1)^2 - 18 \neq 0$		
$x \neq -$	- 4 , x	≠2	• ⁴ ✓ 1	<i>x ≠</i>	$=-4, x \neq 2$		
				x =	x = -4, $x = 2$	•3 🗸	

Question		on	Generic scheme		Illustrative scheme	Max mark
9.	(a)		• ¹ differentiate two non-constant terms		• $eg x^2 - 2x$	4
			• ² complete derivative and equate to 0	e	• ² $x^2 - 2x - 3 = 0$	
			• ³ find <i>x</i> -coordinates		$\bullet^3 \bullet^4$ $\bullet^3 -1, 3$	
			• ⁴ find <i>y</i> -coordinates		• $\frac{8}{3}$, -8	
Note	s:					
1. Fo 2. • ² Ca 3. • ³ 4. • ³	or a nu is onl andida is onl and •	umerio y avai ate A. y avai ⁴ may	cal approach, award 0/4. ilable if $= 0$ appears at the \bullet^2 stag ilable for solving a quadratic equation be awarded vertically.	ge o ion.	r in working leading to \bullet^3 . However, see	<u>,</u>
Com	monly	/ Obse	erved Responses:			
Cano	lidato	٨		Can	didate B - derivative pover equated t	
Stati	onary	point	s when $\frac{dy}{dx} = 0$	x^2	$-2x-3 \qquad \bullet^1 \checkmark \bullet^2 \land$	00
$\left \frac{dy}{dx} \right =$	$x^{2}-2$	2x-3	$\bullet^1 \checkmark \bullet^2 \checkmark$	x = x	$-1, 3$ $\bullet^3 \checkmark_1$	
$\left \frac{dy}{dx} \right =$	(x+1)	(x-1)	3)	<i>y</i> =	$\frac{8}{3}, -8$ • ⁴ \checkmark	
<i>x</i> = -	-1, 3		•3 🗸			
$y = \frac{1}{2}$	$\frac{8}{3}, -8$	1	• ⁴ ✓			
	(b)		• ⁵ evaluate y at $x = 6$		• ⁵ 19	2
			• ⁶ state greatest and least values		• ⁶ greatest = 19 and least = -8	
Note	s:					L
5. 'G	 ireate	st (6.	19): least $(3, -8)$ ' does not gain •	6		
6 W	here	r r	1 was not identified as a stationary	, noi	nt in part (a) v must also be evaluated	at
0. m	o. Where $x = -1$ was not identified as a stationary point in part (a), y must also be evaluated at $x = -1$ to gain \bullet^6 .					
7. ● ⁶	is not	avail	able for using y at a value of x , obt	aine	ed at \bullet^3 stage, which lies outwith the in	terval
$-1 \le x \le 6$.						
8. •	is onl	y avai	ilable where candidates have attem	npte	d to evaluate y at $x = 6$.	
Com	monly	0bse	erved Responses:			

C)uestic	on	Generic scheme		Illustrative scheme	Max mark
10.	(a)		• ¹ state centre		• ¹ (-9,1)	2
			• ² calculate radius		• ² $\sqrt{90}$ or $3\sqrt{10}$ or 9.48	
Note	es:					
1. /	Accept	x = -	-9, $y = 1$ for • ¹ .			
2. I	Do not	accep	ot ' $g = -9, f = 1$ ' or ' $-9, 1$ ' for \bullet^1 .			
3. 1	Do not	penal	ise candidates who treat negative	sign	s with a lack of rigour when calculating	the
1	radius.	For e	xample accept $\sqrt{9^2 + -1^2 + 8} = \sqrt{9}$	o or	$\sqrt{9^2 + 1^2 + 8} = \sqrt{90}$ or $\sqrt{-9^2 + 1^2 + 8} = \sqrt{90}$	90 for
	² . Ho	wever	, do not accept $\sqrt{9^2 - 1^2 + 8} = \sqrt{90}$	for	• ² .	
Com	monly	v Obse	erved Responses:	T		
	(b)		• ³ determine the distance betwee the centres and subtract to finumerical expression for the radius of C ₂	en nd a	• ³ eg $\sqrt{90} - \sqrt{10}$	2
			$ullet^4$ determine equation of C_2		• $(x+6)^2 + y^2 = 40$	
Note	es:				1	
4. 1	Do not	penal	ise the use of decimals.			
5	The dis	tance	between the centres, and the rac	lius o	of C_2 must be consistent with the sizes of	of the
	circles	in the	e original diagram ($d < r_{C_2} < r_{C_1}$).			
6. \	Where	a can	didate uses an incorrect radius wi	hout	supporting working, $ullet^4$ is not available.	
Com	monly	0bse	erved Responses:			
Can	didate	A - fo	ollow-through marking	Car	ndidate B - using line through centres	
Part	(a)		- ² ×	Fai	vation of radius: $3y = -x - 6$	
Part	√/4 :(b)		• ~		$(x^2 + x^2 + 18)(x^2 + x^2) = 0$	
<i>d</i> =	$\sqrt{10}$			((-3y-6) - 2y - 8 = 0	
radi	us =	 74 − √	√ <u>10</u> • ³ ✓ ₁	10	$y^2 - 20y - 80 = 0$	
$(x+6)^2 + y^2 = 5.44^2$ $y = -2$						
(x+	$(6)^2 + 2$	$y^2 = 2^{6}$	9.59 (or 84−4√185) •⁴ ✓ ₁	$\begin{array}{c} x \\ Rac \\ Rac \\ (x \end{array}$	$f = -18 \qquad x = 0$ dius = distance between (-6,0) and (0,-2) dius = $\sqrt{40}$ $+6)^2 + y^2 = 40$	2) ● ³ ✓ ● ⁴ ✓

Question		on	Generic scheme	Illustrative scheme	Max mark		
11.	(a)		•1 state number of vehicles	• ¹ 6.8 million	1		
Note	s:						
1. A	. Accept 6.8 or $N = 6.8$ million for \bullet^1 .						
Com	Commonly Observed Responses:						
	(b)		• ² substitute for N and t	• ² $125 = 6.8e^{10k}$ stated or implied by • ³	4		
			• ³ process equation	• ³ $\frac{125}{6.8} = e^{10k}$			
			• ⁴ express in logarithmic form	• ⁴ $\log_e\left(\frac{125}{6.8}\right) = 10k$			
			• ⁵ solve for k	• ⁵ 0.2911			
Note	s:	L					
 A C C C C A A	accept o not ntermo ³ may any bas at • ⁴ al accept he cal for car /4. Ho	answ penal ediate be ass se ma l expo log _e lculat ndidat	ers which round to 0.29. ise rounding or transcription errors (e calculations. sumed by \bullet^4 . y be used at \bullet^4 stage. See Candidate onentials must be processed. $\frac{125}{6.8} = 10k \log_e e$ for \bullet^4 . ion at \bullet^5 must follow from the valid uses with no working, or who adopt an er, if, in the iterations N is calculated	which are correct to 2 significant figures) A. Use of exponentials and logarithms at \bullet^3 ar iterative approach to arrive at $k = 0.29$, d for $k = 0.295$ and $k = 0.285$, then award	in nd ∙⁴. award i 4/4.		
Com	monly	v Obse	erved Responses:				
Candidate A - use of alternative base $125 = 6.8e^{10k}$ $e^2 \checkmark$ $\frac{125}{6.8} = e^{10k}$ $e^3 \checkmark$ $\log_{10}\left(\frac{125}{6.8}\right) = 10k \log_{10}e$ $e^4 \checkmark$			se of alternative base $e^2 \checkmark$ $e^3 \checkmark$ $k \log_{10} e$ $e^4 \checkmark$ $e^5 \checkmark$	Candidate B - missing lines of working $25 = 6.8e^{10k}$ $e^2 \checkmark$ $x = 0.2911$ $e^3 \land e^4 \land e^5$	(
Canc 1250 1250	11date 000000 00000 6.8	$\mathbf{C} - \mathbf{e}$ $0 = 6.8$ $0 = e^{1}$	$3e^{10k} \qquad \bullet^2 \times \\ 0^k \qquad \bullet^3 \checkmark_1$				
16.72 k = 1	26 <i>=</i> .6726.	10k 	• [•] [•] 1 • ⁵ [•] 1				

Questio	on	Generic scheme	Illustrative scheme	Max mark	
12.		 ¹ substitute appropriate double angle formula 	• ¹ 2(2 sin x° cos x°) - sin ² x° (=0)	5	
		• ² factorise	• ² $\sin x^{\circ} (4\cos x^{\circ} - \sin x^{\circ}) = 0$		
		• ³ solve for $\tan x^{\circ}$	• ³ $\tan x^\circ = 4$ (since $x = 90$, 270 are not solutions)		
		• ⁴ solve $\tan x^\circ = 4$	• ⁴ • ⁵ • ⁴ 76, 256		
		• ⁵ solve $\sin x^\circ = 0$	• ⁵ 0, 180		
Notes:					
2. Substit equation 3. $= 0$ r 4. Award 5. Do not 6. At $= 0$ sin $x = 0$	suting on is v nust a \bullet^2 for pena tage, g by a 0, \bullet^3	2 sin A cos A for sin 2x° at the • ¹ stag written in terms of x at the • ² stage. C appear by the • ² stage for • ² to be awa f'S(4C-S)=0' only where sin x° = 0 lise the omission of degree signs. candidates are not required to check to cos x°. Where candidates have divided and • ⁴ are still available.	be should be treated as bad form provide Otherwise, \bullet^1 is not available. Arded. D and $4\cos x^\circ - \sin x^\circ = 0$ appear. That 90 and 270 are not solutions before I by $\sin x$ at the \bullet^2 stage without conside	ed the	
 7. At •³ stage, candidates may use the wave function and arrive at √17 cos(x+14)°=0, or an equivalent wave form, instead of tan x° = 4. 8. •⁴ is only available where the working at the •³ stage is of equivalent difficulty to reaching tan x° = 4. 9. •⁵ is not available where sin x = 0 comes from an invalid strategy. 10. For candidates who work only in radians, •⁵ is not available. 11. •⁴ and •⁵ may be awarded vertically. See also Candidate B. 12. Do not penalise solutions outwith 0 ≤ x < 360. 					
Commonly	/ Obse	erved Responses:	andidate D - partial askitisms		
Candidate	A - M	vorking in radians	andidate B - partial solutions		

Candidate A - working in radians $ \begin{array}{l} \vdots\\ \tan x^\circ = 4\\ 1.326, 4.468\\ 0, \pi \end{array} $	$ \overset{1}{\bullet} \overset{2}{\bullet} \overset{2}{\bullet} \overset{2}{\bullet} \overset{4}{\bullet} \overset{1}{\bullet} \overset{5}{\bullet} \overset{2}{\bullet} 2$	Candidate B - partial solutions $2(2 \sin x^{\circ} \cos x^{\circ}) - \sin^{2} x^{\circ} = 0$ $\sin x^{\circ} (4 \cos x^{\circ} - \sin x^{\circ}) = 0$ $\sin x^{\circ} = 0$ x = 180 $\tan x^{\circ} = 4$ x = 76 5°	• ² ✓	• ¹ ✓
		• ⁵ ^		

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark	
13.			• ¹ state repeated factor	• ¹ $(x-3)^2()()$	3	
			• ² state non-repeated linear facto	rs $e^{2} ()^{2} (x+1)(x-5)$		
			• ³ calculate <i>k</i> and express in required form	• ³ $f(x) = \frac{1}{5}(x-3)^2(x+1)(x-5)$		
Note	s:					
1. Do	not p	enali	se the omission of $f(x) =$ or the ir	clusion of $y = .$		
2. Ac	cept	f(x)	$=\frac{1}{5}(x+-3)^{2}(x+1)(x+-5) \text{ for } \bullet^{3}.$			
Com	monly	Obse	erved Responses:			
Cand	lidate	A - ir	ncorrect signs	Candidate B - incorrect repeated root		
f(x))=k(.	(x+3)	$(x-1)(x+5)$ $\bullet^1 \times \bullet^2 \checkmark_1$	$f(x) = k(x+1)^{2}(x-3)(x-5)$	• ● ² ✓ 1	
f(x)	$=\frac{1}{5}($	(x+3)	$(x-1)(x+5)$ $\bullet^3 \checkmark_1$	$f(x) = -\frac{3}{5}(x+1)^2(x-3)(x-5)$	1	
Cand	lidate	C - ir	correct repeated root	Candidate D - incorrect signs and repo	eated root	
f(x))=k(.	$(x-5)^{2}$	$(x+1)(x-3)$ $\bullet^{1} \times \bullet^{2} \checkmark_{1}$	$f(x) = k(x+5)^{2}(x-1)(x+3)$	• ² ×	
f(x)	$)=\frac{3}{25}$	(x-5)	$)^{2}(x+1)(x-3)$ $\bullet^{3}\checkmark_{1}$	$f(x) = \frac{3}{25}(x+5)^2(x-1)(x+3)$	1	
Candidate E - incorrect signs and repeated root			correct signs and repeated root	Candidate F - use of a, b and c		
f(x))=k(.	$(x-1)^2$	$(x+5)(x+3)$ $\bullet^1 \times \bullet^2 \times$	a = -3 b = 1, c = -5 (or $b = -5, c = 1$) • ²	• ¹ ✓	
f(x)	$) = -\frac{3}{5}$	(x-1)	$)^{2}(x+5)(x+3)$ \bullet^{3}	$k = \frac{1}{5}$		

[END OF MARKING INSTRUCTIONS]